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Chapter 14
Privacy-Preserving Technologies

Josep Domingo-Ferrer and Alberto Blanco-Justicia

Abstract  This chapter introduces privacy and data protection by design, and 
reviews privacy-enhancing techniques (PETs). Although privacy by design includes 
both technical and operational measures, the chapter focuses on the technical mea-
sures. First, it enumerates design strategies. Next, it considers privacy-enhancing 
techniques that directly address the hide strategy, but also aid in implementing the 
separate, control and enforce strategies. Specifically, it addresses PETs for: (1) 
identification, authentication and anonymity; (2) private communications; (3) 
privacy-preserving computations; (4) privacy in databases; and (5) discrimination 
prevention in data mining.

Keywords  Anonymisation · Cryptography · Digital signatures · Privacy · Privacy-
enhancing techniques · Statistical disclosure control

14.1  �Introduction

Applying cybersecurity mechanisms is essential to the protection of digital assets, 
whether they be personal, industrial or commercial. Current cybersecurity (and 
safety) measures include the collection of data from several points to detect, and 
potentially foresee, anomalies that can be attributed to malicious behaviour (e.g. 
cyberattacks). Collecting these data can, in some cases, encroach on the privacy of 
citizens. The new General Data Protection Regulation (GDPR)1 states that the col-
lection and processing of personal data for cybersecurity reasons is legitimate; how-

1 Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the 
protection of natural persons with regard to the processing of personal data and on the free move-
ment of such data, and repealing Directive 95/46/EC (General Data Protection Regulation).
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ever, it is still subject to the rest of requirements of the regulation, such as consent, 
transparency and adequate protection (see also Chaps. 5 and 10).

This chapter introduces privacy and data protection by design and reviews 
privacy-enhancing techniques (PETs). Although privacy by design includes both 
technical and operational measures, we focus here on the technical measures.

Therefore, the analyses within this chapter can empower both cybersecurity ser-
vice providers and general service providers to design systems that are compliant 
with the GDPR, in addition to achieving other benefits. For example, while personal 
data can only be held by a controller for a limited period of time, anonymised data 
are no longer considered personal data and thus they are outside the scope of 
GDPR.  Hence, anonymised data can be handled much more freely: they can be 
shared and stored indefinitely, which in particular enables exploratory, collaborative 
and long-term studies.

14.1.1  �Design Strategies

Privacy and data protection by design can be achieved by applying certain design 
strategies (see also Chap. 2). We next enumerate the eight design strategies intro-
duced by Hoepman (2014).

	1.	 Minimise. System designers should ensure that only the minimal necessary per-
sonal information is collected.

	2.	 Hide. This strategy implies that the confidentiality of collected data is ensured, 
either by encrypting, pseudonymising or anonymising data in transit or in stor-
age. The rest of this document is dedicated to describing several mechanisms to 
enforce this design principle.

	3.	 Separate. Personal data should be stored and processed in a distributed way.
	4.	 Aggregate. Storage of individualised data should be restricted as much as possi-

ble and be replaced by aggregates whenever feasible.
	5.	 Inform. Respondents should be made aware of what information about them is 

being collected and processed and for which reasons.
	6.	 Control. Respondents should be able to consult, modify and delete the informa-

tion about them.
	7.	 Enforce. Privacy policies should be put in place and enforced.
	8.	 Demonstrate. Data controllers ought to document all collection and analysis pro-

cesses conducted on personal information.

The remaining sections enumerate privacy-enhancing techniques that directly 
address the hide strategy but also aid in implementing the separate, control and 
enforce strategies. Note that some of the techniques described render data unlink-
able to individuals, that is, they turn personal data into data that are no longer 
personal.
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14.2  �Identity, Authentication and Anonymity

Identity, authentication and access control are central components of secure sys-
tems. It is important that data assets be accessible only to authorised parties. On the 
one hand, a sound authentication and authorisation infrastructure prevents data 
breaches. On the other hand, it allows responsibilities to be attributed in case of a 
breach, which contributes to a transparent data processing environment.

Several methods exist to verify the identity of individuals, that is, to authenticate 
them. Some of them allow for the authentication of users without disclosing their 
identity.

14.2.1  �Digital Signatures

In paper documents, handwritten signatures guarantee the authenticity of the docu-
ment, and the signer cannot repudiate it. Moreover, the paper support gives some 
protection against manipulation: deletions and additions can be detected, at least by 
an expert. Digital signatures were created in order to guarantee the authenticity and 
integrity in the case of electronic communications, and to avoid their repudiation. 
Digital signatures were made possible by the deployment of public-key encryption. 
In addition, digital signatures and the public key infrastructure can be used to pro-
vide authentication of individuals.

If both sender and receiver share some information, an alternative to digital sig-
natures are message authentication codes (MACs). They are based on keyed crypto-
graphic hash functions, and they can be used to guarantee the integrity of the 
message. MACs are commonly used in the context of symmetric encryption com-
munications, where sender and receiver share a secret key.

Next, we enumerate specific classes of digital signatures that enable authentica-
tion while being compatible with some user anonymity.

14.2.1.1  �Blind Signatures

Blind signatures (Chaum 1983) are considered particularly useful for electronic 
payment systems, electronic voting schemes and token-based access control mecha-
nisms; a user may obtain a signature (e.g. a signed coin from a bank) such that the 
signer does not know the contents of the message and cannot produce further valid 
signatures.

14  Privacy-Preserving Technologies
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14.2.1.2  �Group Signatures

In a group signature scheme (Chaum and Van Heyst 1991), a set of users, called 
members of the group, can issue signatures of arbitrary messages on behalf of the 
group. A verifier can check the validity of the signature using the group public key. 
The main interest in this kind of signature is that it ensures the privacy of signers 
against potential verifiers, because a potential verifier cannot distinguish two sign-
ers from the same group.

A requirement of group signatures is the support for membership revocation of 
misbehaving members without the need to update the group public key. To facilitate 
member revocation, some members, called group managers, are endowed with the 
capability to revoke membership.

14.2.1.3  �Identity-Based Signatures

Identity-based signature schemes, theorised in Shamir (1984) and with the first con-
crete protocol, based on the Weil pairing, shown in Boneh and Franklin (2001), 
allow public keys to be arbitrary strings of some length, called identities. These 
strings are associated with a user and reflect some aspect of her identity, e.g. his 
email address. The corresponding secret key is then computed by a trusted entity 
taking as input the user’s identity and, possibly, some other secret information, and 
is sent to the user through some secure channel. Identity-based public key signature 
schemes offer considerable flexibility in key generation and management.

14.2.1.4  �Attribute-Based Signatures

Attribute-based signatures generalise identity-based signatures in that, instead of 
having the users’ identities as credentials, they use properties, or attributes, of the 
users as the latters’ credentials (in the attribute-based setting, the identity is one 
more attribute of the user). Attribute-based signatures were introduced by Shanqing 
and Yingpei (2008), inspired by previously existing attribute-based encryption 
schemes, such as the one in Goyal et al. (2006). In attribute-based signatures (and 
encryption) schemes, the users receive private key shares associated to their creden-
tials, such as their name, age, country of residence, having or not a driving licence, 
place of work, etc. Digital signatures are produced with respect to some function of 
the users’ credentials, typically called a policy.

For example, a drugstore may accept drug prescriptions only if they are issued by 
medical doctors or by nurses with a long working experience. In this scenario, pre-
scriptions could be digitally signed under the policy role = “medical doctor” OR 
(role = “nurse” AND experience = “10 years”). The identity of the signer in this 
case is irrelevant.
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14.2.2  �Zero-Knowledge Proofs

Zero-knowledge proofs (Ben-Or et al. 1988b) allow a prover to convince a verifying 
party of the truth of a statement without revealing any information other than the 
truth of the statement. In particular, if the statement requires the prover to hold some 
secret information, then the verifier does not learn this information—it is possible to 
prove knowledge of a secret without revealing the secret itself. Statements that only 
prove possession of a secret are known as zero-knowledge proofs of knowledge. 
Proofs can be either interactive or non-interactive depending on whether the parties 
can communicate during the proof. In general, non-interactive proofs (Blum et al. 
1988) are considered more difficult since they cannot use interactive challenge-
response protocols and they require the random oracle model or a common refer-
ence string between parties. Whereas zero-knowledge proofs can be rather 
inefficient, non-interactive proof systems built on bilinear groups (Groth and Sahai 
2008) are particularly efficient for group-dependent problems where the secrets are 
group elements or the exponents of a group element. As many useful cryptographic 
schemes are built using bilinear pairings, particularly functional encryption, such a 
proof system can be very useful for proving knowledge of a cryptographic secret 
without revealing it.

Zero-knowledge proofs can be used to authenticate users holding cryptographic 
devices, such as smartcards, without leaking any information about these users 
except that they hold a valid card.

14.2.3  �Implicit Authentication

In implicit authentication, a server can authenticate users by checking whether 
their behaviour is compatible or similar enough to their past-recorded behaviour. 
In this context, the user’s behaviour can be modelled as a combination of features 
such as her browsing history, usual location, keystroke patterns, usually visible 
cell stations, etc.

In the study of Jakobsson et al. (2009), empirical evidence was given that the 
features collected from the user’s device history are effective to distinguish users 
and therefore can be used to implicitly authenticate them. The collection of these 
data, however, may be too privacy-invasive. Proposals such as those by Safa et al. 
(2014) Domingo-Ferrer et  al. (2015) and Blanco-Justicia and Domingo-Ferrer 
(2018) make use of homomorphic encryption and secure multiparty computation 
to authenticate users from their past behaviour without forcing them to disclose 
their profiles.

14  Privacy-Preserving Technologies
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14.3  �Private Communications

This section discusses the protection of communication channels. First, it describes 
end-to-end encryption, which provides confidentiality of communications. It then 
introduces anonymous channels. Having discussed mechanisms that allow users to 
be authenticated without revealing their identities, it is logical to discuss communi-
cation channels that do not reveal their address, which is also part of their identity.

14.3.1  �End-to-End Encryption

End-to-end encryption refers to the encryption of messages exchanged by two or 
more parties without the intervention of a centralised server. The centralised server 
may exist and support the transport of the messages but all this server sees is 
encrypted content. This behaviour is the opposite of the traditional message 
exchange protocols, in which the messages are only encrypted while in transit from 
the parties to the central server or from the central server to the parties.

End-to-end encryption is typically supported by having all participants have a 
key pair from a public-key encryption scheme. The centralised server, in addition to 
supporting the exchange of messages, works as a public-key repository, where users 
can find the public keys of the users to whom they want to send messages. Once a 
user has obtained another user’s public key, she can use this public key to encrypt 
the messages, which will only be decryptable by the owner of the corresponding 
private key. A more efficient variant is for users to exchange random session keys 
for symmetric encryption by enciphering them under their public-private pairs and 
then encrypting the messages with a symmetric encryption scheme under these ran-
dom temporal session keys.

14.3.2  �Anonymous Channels

Anonymous channels allow users to hide their address (e.g. the IP address) to the 
service provider they are communicating with. Examples of anonymous channels 
include mixnets and onion routing.

A mix network or mixnet is a routing protocol in which each of the network 
nodes shuffles (and re-encrypts) all received messages before sending them to the 
next node (Chaum 1981). The shuffling process is kept secret by each mix server. 
Additionally, the sender of the message might successively encrypt the message 
with each of the mix servers’ public keys. If that is the case, each mix server will 
have to decrypt each of the encryption layers (as if peeling an onion) until the final 
destination of the message. The ToR network (Dingledine et al. 2004) is an example 
of this operation.
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14.4  �Privacy-Preserving Computations

This section describes mechanisms to make computations on data while keeping the 
data private. The GDPR accepts encryption as a valid protection mechanism if the 
decryption keys are only available to those entitled to have them. However, most 
data analyses are incompatible with most encryption procedures: users typically 
require data in clear form to analyse them.

Nonetheless, the following encryption techniques do allow some computations 
to be carried out directly on encrypted data, and are usually part of larger systems, 
such as privacy-preserving data mining.

14.4.1  �(Partially) Homomorphic Encryption

Some encryption schemes are homomorphic in nature. Given two ciphertexts 
encrypting two plaintexts, certain operations can be performed on the ciphertexts 
such that the result can be decrypted to produce the outcome of applying an opera-
tion (not necessarily the same) on the plaintexts themselves. Thus, some computa-
tions can be performed on encrypted data. Schemes that exhibit homomorphic 
properties for a specific operation are known as partially homomorphic encryption 
schemes. Examples of this class are those in ElGamal (1985) and Paillier (1999). 
On the other hand, if the set of permissible operations enable arbitrary computations 
to be performed, then the schemes are referred to as fully homomorphic (Gentry 
2009; Gentry et al. 2013). Although fully homomorphic schemes are in principle 
very powerful, currently available instances also involve very substantial overhead 
and storage expansion. For that reason, less powerful schemes, known as somewhat 
homomorphic, are sometimes preferred: under these schemes, the number of opera-
tions that can be performed on ciphertext before decryption will no longer succeed 
is limited.

14.4.2  �Multiparty Computation

Secure multiparty computation protocols allow a set of parties to compute a joint 
function of their inputs in a secure way without requiring a trusted third party. 
During the execution of the protocol the parties do not learn anything about each 
other’s input except what is implied by the output itself.

A general solution for the secure computation of functions among two players 
was introduced in Yao (1986). The main idea of these protocols was to describe the 
function as a circuit, and to compute every gate of the circuit in a secure way. This 
idea was extended to the multi-partite setting in Goldreich et  al. (1987). They 
showed how to create a secure multiparty computation protocol that allows playing 
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any game and does not leak any information if the majority of the participants are 
honest. These protocols are computationally secure. The first unconditionally secure 
multi-party computation protocols were presented in Ben-Or et  al. (1988a) and 
Chaum et al. (1988). These authors gave protocols to compute any arithmetic func-
tion in a secure way when at least two thirds of the parties are honest.

Two of the main open problems in secure multiparty computation are: (i) to relax 
the assumptions on the behaviour of the players, and (ii) to reduce the computa-
tional and communication costs of the protocols for interesting families of func-
tions. It should be observed that, in the general solutions described above, the 
computational costs of the protocol depend on the size of the circuit defining the 
function.

The most important properties of secure multiparty computation protocols are 
privacy and correctness. Another important property is fairness. A protocol is fair if 
there are no differences between the players when it comes to obtaining the output. 
That is, a protocol is fair if either everybody receives their output, or no one does.

14.5  �Privacy in Databases

An alternative strategy to protect data is to make them no longer linkable to indi-
viduals, that is, to anonymise them. Anonymised data are no longer considered per-
sonal, and thus the legal restrictions that apply to personal data are lifted. This 
section describes the state of the art in data anonymisation techniques and models.

14.5.1  �Respondent Privacy: Statistical Disclosure Control

Traditionally, national statistical institutes and government agencies have system-
atically gathered information about individual respondents, either people or compa-
nies, with the aim of using it for policymaking and also distributing it for public and 
private research that may benefit their country. The most detailed way to dissemi-
nate this information is by releasing a microdata set, essentially a database table, 
each of whose records conveys information on a particular respondent. Although 
these databases may be extremely useful to researchers, it is of fundamental impor-
tance that their publication does not compromise the respondents’ privacy in the 
sense of revealing information attributable to specific individuals. Statistical disclo-
sure control (SDC) is the discipline that deals with the inherent trade-off between 
protecting the privacy of the respondents and ensuring that the protected data are 
still useful to researchers.

Usually, a microdata set contains a set of attributes that may be classified as 
identifiers, key attributes (a.k.a. quasi-identifiers), or confidential attributes. 
Identifiers allow unequivocal identification of individuals. Examples are social 
security numbers or full names, which need to be removed before publication of the 
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microdata set. On the other hand, key attributes are those attributes that, in combina-
tion, may allow linkage with external information to re-identify (some of) the 
respondents to whom (some of) the records in the microdata set refer (identity dis-
closure). Examples include job, address, age, gender, height and weight. Last but 
not least, the microdata set contains confidential attributes with sensitive informa-
tion on respondents, such as salary, religion, political affiliation or health condition. 
Beyond protecting against identity disclosure, SDC must prevent intruders from 
guessing the confidential attribute values of specific respondents (attribute 
disclosure).

Several SDC methods have been proposed in the literature to protect microdata 
sets (Hundepool et al. 2012). Next, we briefly review the main ones.

14.5.2  �Non-perturbative Masking

In SDC, masking refers to the process of obtaining an anonymised data set X’ by 
modifying the original X. Masking can be perturbative or non-perturbative. In the 
former approach, the data values of X are perturbed to obtain X’. In contrast, in non-
perturbative masking X’ is obtained by removing some values and/or by making 
them more general; yet the information in X’ is still true, although less detailed; as 
an example, a value might be replaced by a range containing the original value.

Common non-perturbative methods include:

–– Sampling. Instead of publishing the whole data set, only a sample of it is released.
–– Generalisation. The values of the different attributes are recoded in new, more 

general categories such that the information remains the same, albeit less 
specific.

–– Top/bottom coding. In line with the previous method, values above (resp. below) 
a certain threshold are grouped together into a single category.

–– Local suppression. If a combination of quasi-identifier values is shared by too 
few records, it may lead to re-identification. This method relies on replacing 
certain individual attribute values with missing values, so that the number of 
records sharing a particular combination of quasi-identifier values becomes 
larger.

14.5.3  �Perturbative Masking

Perturbative masking generates a modified version of the microdata set such that the 
privacy of the respondents is protected to a certain extent while simultaneously 
some statistical properties of the data are preserved. Well-known perturbative mask-
ing methods include:

14  Privacy-Preserving Technologies
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–– Noise addition. This is the most popular method, which consists in adding a 
noise vector to each record in the data set. The utility preservation depends on the 
amount and the distribution of the noise.

–– Data swapping. This technique exchanges the values of the attributes randomly 
among individual records. Clearly, univariate distributions are preserved, but 
multivariate distributions may be substantially harmed unless swaps of very dif-
ferent values are ruled out.

–– Microaggregation. This groups similar records together and releases the average 
record of each group (Domingo-Ferrer and Mateo-Sanz 2002). The more similar 
the records in a group, the more data utility is preserved.

14.5.4  �Synthetic Microdata Generation

An anonymisation approach alternative to masking is synthetic data generation. 
That is, instead of modifying the original data set, a simulated data set is generated 
such that it preserves some properties of the original data set. The main advantage 
of synthetic data is that no respondent re-identification seems possible since the data 
are artificial. However, if, by chance, a synthetic record is very close to an original 
one, the respondent of the latter record will not feel safe when the former record is 
released. In addition, the utility of synthetic data sets is limited to preserving the 
statistical properties selected at the time of data synthesis.

Some examples of synthetic generation include methods based on multiple 
imputation (Rubin 1993) and methods that preserve means and co-variances 
(Burridge 2003). An effective alternative to the drawbacks of purely synthetic data 
are hybrid data, which mix original and synthetic data and are therefore more flex-
ible (Domingo-Ferrer and González-Nicolás 2010). Yet another alternative is par-
tially synthetic data, whereby only the most sensitive original data values are 
replaced by synthetic values.

14.5.5  �Privacy Models

For an anonymised data set X’ to be safe/private enough, it needs to be sufficiently 
anonymised. The level of anonymisation can be assessed after the generation of X’ 
or prior to it.

Ex post methods rely on the analysis of the output data set and, therefore, it is 
possible to generate a data set that is not safe enough according to a certain crite-
rion; several iterations with increasingly strict privacy parameters and decreasing 
utility may be needed. The most commonly used ex post approach is masking fol-
lowed by record linkage. Protection is sufficient high only if there is a sufficiently 
low proportion of masked records that can be linked to the respective original 
records they come from.
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On the other hand, the ex ante approach relies on privacy models that allow 
selecting the desired privacy level before producing X’. In this way, the output data 
set is always as private a specified by the model, although it may fail to provide 
enough utility if the model parameters are too strict.

14.5.5.1  �k-Anonymity and Extensions

A well-known privacy model is k-Anonymity (Samarati and Sweeney 1998), which 
requires that each tuple of key-attribute values be shared by at least k records in the 
database. This condition may be achieved through generalisation and suppression 
mechanisms, and also through microaggregation (Domingo-Ferrer and Torra 2005).

Unfortunately, while this privacy model prevents identity disclosure, it may fail 
to protect against attribute disclosure. The definition of this privacy model estab-
lishes that complete re-identification is unfeasible within a group of records sharing 
the same tuple of perturbed key-attribute values. However, if the records in the 
group have the same value (or very similar values) for a confidential attribute, the 
confidential attribute value of an individual linkable to the group is leaked.

To fix this problem, some extensions of k-Anonymity have been proposed, the 
most popular being l-diversity (Machanavajjhala et  al. 2006) and t-closeness (Li 
et  al. 2007a). The property of l-diversity is satisfied if there are at least l ‘well-
represented’ values for each confidential attribute in all groups sharing the values of 
the quasi-identifiers. The property of t-closeness is satisfied when the distance 
between the distribution of each confidential attribute within each group and the 
whole data set is no more than a threshold t.

14.5.5.2  �Differential Privacy

Another important privacy model is differential privacy (Dwork 2006). This 
model was originally defined for queryable databases and consists in perturbing 
the original query result of a database before outputting it. This may be viewed as 
equivalent to perturbing the original data and then computing the queries over the 
modified data. Thus, differential privacy can also be seen as a privacy model for 
microdata sets.

An ε-differentially private algorithm is one that, when run on two datasets that 
differ in a single record, performs similarly (up to a power of ε) in both cases. That 
is, the presence or the absence of any single record does not significantly alter the 
output of the algorithm. Typically, ε-differential privacy is attained by adding 
Laplace noise with zero mean and parameter Δ(f)/ε, where Δ(f) is the sensitivity of 
the algorithm (the maximum change in the algorithm output that can be caused by a 
change in a single record in the absence of noise) and ε is a privacy parameter; the 
larger ε, the less privacy.
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14.5.5.3  �Permutation Model for Anonymisation

The permutation model (Domingo-Ferrer and Muralidhar 2016) views all anonymi-
sation methods as being functionally equivalent to a two-step procedure consisting 
of a permutation step (mapping the original data set to the output of a reverse map-
ping procedure [Muralidhar et al. 2014]) plus a noise addition step (adding the dif-
ference between the reverse-mapped output and the anonymised data set). Since the 
ranks in the reverse-mapped version and in the anonymised version are the same by 
construction, the noise added in the second step needs to be small, since otherwise 
ranks would change. This shows that any anonymisation method basically amounts 
to permutation.

The most interesting feature, however, is that each subject/respondent can check 
whether a privacy model called (d,v)-permuted privacy is satisfied for his or her 
original record by the anonymised data set for some d and v of her choice; in plain 
words, each subject can check whether his or her response has been permuted 
enough in the anonymised data set. The subject only needs to know his or her origi-
nal record and the anonymised data set.

14.5.6  �Redaction and Sanitisation of Documents

Document redaction consists of removing or blacking out sensitive terms in plain 
textual documents. Alternatively, when sensitive terms are replaced (instead of 
removed) by generalisations (e.g. AIDS → disease), the process is more generically 
referred to as document sanitisation (Bier et  al. 2009). Document sanitisation is 
more desirable than pure redaction, since the former better preserves the utility of 
the protected output. Moreover, in document redaction, the existence of blacked-out 
parts in the released document can raise awareness of the document’s sensitivity to 
potential attackers (Bier et al. 2009), whereas sanitisation gives no such clues.

In both cases, two tasks should be performed: (i) the detection of textual terms 
that may cause disclosure of sensitive information, and (ii) the removal or obfusca-
tion of those entities. Traditionally, the detection of sensitive terms has been tackled 
in a manual way. This requires a human expert who applies certain standard guide-
lines that detail the correct procedures to sanitise sensitive entities (National Security 
Agency 2005). Manual redaction has proven to be quite time-consuming and it does 
not scale to currently required levels of information outsourcing (Chakaravarthy 
et al. 2008; Bier et al. 2009).

In recent years, numerous automatic redaction methods have been proposed. 
Some approaches rely on specific or tailored patterns to detect certain types of infor-
mation based on their linguistic or structural regularities (e.g. names, addresses and 
social security numbers) (Sweeney 1996; Tveit et al. 2004; Douglass et al. 2005). 
Schemes such as Douglass et al. (2005) and Tveit et al. (2004) use more specific 
patterns to remove sensitive terms from medical records. These patterns are designed 
according to the HIPAA ‘Safe Harbor’ rules (Department of Health and Human 
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Services, USA 1996) that specify eighteen data elements which must be eliminated 
from clinical data in order to anonymise a clinical text. As an alternative to manually-
specified patterns, several authors have proposed using trained classifiers that rec-
ognise sensitive entities. Yet others present a tool that focuses on the sanitisation of 
documents directly linked to certain companies (Cumby and Ghani 2011). The data 
to be detected include words and phrases that reveal the company the document 
belongs to.

Abril et  al. (2011) propose a general scheme that uses a trained classifier for 
Named Entity Recognition (NER) (i.e. the Stanford NER [Finkel et al. 2005]) to 
automatically recognise entities belonging to general categories such as person, 
organisation and location names. This mechanism suggests generalising sensitive 
entities instead of removing them from the sanitised document. The goal is to 
achieve a certain degree of privacy while preserving some of the semantics. Jiang 
et al. (2009) provide a theoretic measure (‘t-plausibility’) that guides the sanitisa-
tion process in order to balance the trade-off between privacy protection and utility 
preservation. Their scheme tries to preserve the utility of sanitised documents by 
generalising terms based on general-purpose ontology/taxonomy. Finally, Sánchez 
et  al. (2013) present a system that relies on information theory to quantify the 
amount of information conveyed by each term of the document. The latter work 
builds on Sánchez et al. (2012), where sensitive terms are generalised.

14.5.7  �Data Stream Anonymisation

A data stream is a sequence of data items that become available over time. This type 
of dynamic data is common in some environments, such as sensor networks, web 
logs, etc. Data streams are quite different from static data sets. In particular, streams 
are potentially infinite, may be fast flowing and may require fast processing for 
anonymisation. Because of these particularities, anonymisation methods that target 
dynamic data must be specifically designed. Whereas there is a large body of SDC 
methods for static data, the disclosure risk control literature on data streams is lim-
ited. The existing proposals follow three main approaches: perturbative masking, 
non-perturbative masking and counterfeiting.

In the perturbative masking approach, some noise is added to conceal the real 
value of the records. Li et al. (2007b) devised a method by which the correlation and 
the autocorrelation of multivariate data streams is tracked in an attempt to identify 
a good trade-off between privacy and utility. Differential privacy has also been used 
to anonymise data streams in some constrained scenarios. In Dwork et al. (2010), a 
differentially private counter of the number of 1’s in a data stream is released at each 
step. This method was generalised in Bolot et al. (2013) to compute differentially 
private sums over restricted windows.

In the non-perturbative masking approach, one seeks to hide each record in the 
stream within a group of records. In the static data setting, k-anonymity and its 
extensions are well-known privacy models that follow this approach. In the work of 
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Cao et al. (2011a) and (2011b) these privacy models are adapted to streams. Since 
to make groups we need to accumulate records, this approach necessarily introduces 
some delay in the release of the anonymised stream. Quite recently, a perturbative 
adaptation of k-anonymity for streams, based on a primitive called steered microag-
gregation, has been introduced by Domingo-Ferrer and Soria-Comas (2017).

In the counterfeiting approach, a record is attempted to be hidden within a group 
of records. By hiding each record within a group of fake records, we avoid the delay 
inherent to the previous approach Kim et al. (2014). The main drawback is the over-
head introduced by the addition of fake records.

14.5.8  �Owner Privacy: Privacy-Preserving Data Mining

Privacy-Preserving Data Mining (PPDM) tries to solve the following question: can 
we develop accurate data mining models without access to the data at the record 
level? Therefore, it consists of techniques for modifying the original data in such a 
way that the private data remain private even after the mining process Verykios et al. 
(2004).

There are two radically different approaches to PPDM, namely, PPDM based on 
perturbation and PPDM based on Secure Multiparty Computation (SMC). The first 
was introduced by Agrawal and Srikant (2000) in the database community. Its idea 
is that respondents (who do not wish to reveal the exact value of their respective 
answers/records) or controllers (who wish to engage in joint computation with other 
controllers without disclosing their respective data sets to each other) compute mod-
ified values for sensitive attributes in such a way that accurate statistical results can 
still be obtained on the modified data. PPDM based on perturbation is largely based 
on statistical disclosure control techniques.

PPDM based on SMC, which was introduced by Lindell and Pinkas (2000) in the 
cryptographic community, addresses the problem of several entities holding confi-
dential databases who wish to run a data mining algorithm on the union of their 
databases, without revealing unnecessary information. This type of PPDM is equiv-
alent to data mining in distributed environments, where the data are partitioned 
across multiple parties. Partitioning can be vertical (each party holds all records on 
a different subset of attributes), horizontal (each party holds a subset of the records, 
but each record contains all attributes) or mixed.

Using SMC protocols based on cryptography (many of these resort to homomor-
phic encryption) or on sharing perturbed information in ways that do not alter the 
final results often requires changing or adapting the data mining algorithms. Hence, 
each cryptographic PPDM protocol is designed for a specific data mining computa-
tion and, in general, is not valid for other computations. For example, a secure scalar 
product protocol based on cryptographic primitives is applied to privacy preserving 
k-means clustering over a distributed dataset by Vaidya and Clifton (2003) and 
Jagannathan and Wright (2005). Similarly, Du et al. (2004) and Karr et al. (2009) 
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propose different ways (none of them based on encryption) to securely compute 
matrix products, which permits obtaining privacy-preserving linear regressions.

A different PPDM scenario arises when a data controller wants to leverage the 
storage and also the computational power of untrusted clouds to process her sensi-
tive data. This setting was studied in the H2020 project ‘CLARUS’ (http://clarusse-
cure.eu) and solutions based on cleartext data splitting across several clouds have 
been proposed. Furthermore, protocols to compute scalar products and matrix prod-
ucts with minimum controller involvement and maximum cloud involvement have 
been given by Domingo-Ferrer et al. (2018).

14.5.9  �User Privacy: Private Information Retrieval

Finally, we address the privacy of the users querying a database. A history of queries 
to a database, or to a web search engine, can be used by the database owner to learn 
the interests of users, that is, to profile them. In this scenario, we seek to protect 
users from unrequested profiling by database owners. Mechanisms to achieve this 
goal are collectively referred to as private information retrieval (PIR).

Initial works on PIR, such as Chor et al. (1995), model databases as vectors of 
entries. Users requesting information from the database do so by providing an 
index or a set of indices of the database vector. In this setting, PIR techniques aim 
to hide the indices provided by the users. However, these initial approaches have 
several shortcomings. First, they require collaboration from the database owner, 
something that cannot be ensured unless database owners have a clear incentive to 
do so. Second, to perfectly hide the queried database indices one would need to 
query all entries in the database and then filter the results locally, which is clearly 
inefficient for moderately sized databases and certainly unfeasible for big data-
bases. Finally, modelling a database as a vector and assuming that the user knows 
the indices where the desired information is stored is not applicable to most real 
databases, let alone web search engines.

Several solutions have been proposed to overcome such shortcomings. Domingo-
Ferrer et al. (2009) propose a system named Goopir in which user queries are locally 
complemented with terms of similar frequency in the language (connected by OR 
operations). The responses are then filtered locally. TrackMeNot (Howe and 
Nissenbaum 2009) is a browser extension which periodically sends fake queries to 
web search engines so that the distribution of interests of the user is flattened and no 
useful profile can be extracted. Finally, other proposals such as the one by Reiter 
and Rubin (1998) make use of a P2P network in which users submit queries gener-
ated by other users to the web search engine, thus achieving the same results as 
TrackMeNot (flattened interest distributions) but without overloading the web 
search engines with fake queries.
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14.6  �Discrimination Prevention in Data Mining

Other than privacy implications, automated data collection and processing may 
have a secondary negative impact, which is discrimination. Automated data mining 
is used in several services to derive association and classification rules, which are 
then applied to a variety of decisions, such as loan granting, personnel selection, 
insurance premium computation, etc. While an automated classifier may be seen as 
a fair decision-making tool, if the training data are inherently biased, the generated 
rules will result in potentially discriminatory decisions.

Some works tackle this issue by pre-processing the training data using tech-
niques akin to those from statistical disclosure control, but aimed at reducing the 
inherent bias in the data. Others act directly on the automatically mined rules, either 
by eliminating some of them or by generalising some of the conditions of these 
rules (Hajian and Domingo-Ferrer 2013; Hajian et al. 2014, 2015).
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